更新时间:2023-08-12 18:04 | 信息编号:272571 |
联系人: | 电话: |
2015年福建省自题组专家点评高考数学试卷
数学:强调解决实际问题的能力
闽南网6月9日讯 福建数理试卷分别取自构成高中数学主要框架的函数与导数、立体几何、解析几何、概率与统计、三角函数、数列等试题。 它相对较高,有机地融合了相关知识、技能和思维方式,从而全面测试考生成为未来公民所必需的数学基础。
试题适度创新
该命题在保持稳定的同时追求创新,适度考察将现有知识和方法迁移到新情况解决问题的能力。 例如,理论8(第16条)以算术数列和几何数列的定义为载体,综合考察推理论证能力、计算求解能力和创新意识; 理论10和第21条(二)(ii)以几何意义和正弦函数的最小正周期为载体,综合考察推理能力、特殊与一般思想、有限与无限思想以及组合的能力。数字和形状; 理论15以纠错码和异或运算为载体,综合考察阅读理解能力、迁移能力和应用能力。
突出能力考核
该命题把综合运用数学知识和方法解决问题的能力放在首位。 例如,第12条依托“三角函数线”,重点考察推理论证能力、抽象概括能力、数字与形状的结合能力; 第十八条、李十六依托《全网通信融合指标》和《银行卡密码》,重点考察数据处理能力、应用意识、必要性和可能性的思想; 第二十条(三)重点考察空间想象能力、推理论证能力以及基于“两点间最短线段”的还原变换思路; 文学10依托《导数的几何意义》重点考查推理与论证能力、特殊思维与一般思维、数字与形状的结合; 李15依托“纠错码和异或运算”,重点考察推理论证能力和创新意识; 文22、理20依靠“导数综合应用”考察推理论证能力、计算解题能力、创新意识、数形结合、分类整合等。
基于选择的提议
命题强调数学的应用,不仅考察数学知识和方法在学科中的应用。 如文12、文15、文21、文22、李9、李14、李19、李20,也考察数学知识在解决实际问题中的应用; 如文13、文18、李4、李15、原因16。
命题是根据选题要求而定,每个子题的答案也是由易到难。 例如,第20条、第21条、第22条第(一)、(二)题,第十九条、第20条第(一)题相对容易进入,其余题目重点考察考生的自然语言、图形语言等。以及符号语言的转化和思考能力。
【2015年福建省高考数学试卷自命题组专家点评】相关文章:
★ 2015年一年级数学第2卷期中试卷解析
★ 2015年一年级数学期中考试试卷解析
★ 2013年高考数学试题
★ 2013年湛江中考数学模拟试题
★ 2013年六年级数学试卷
★ 2015年高考数学江苏试卷复习
★ 2015年七年级数学期中考试试卷解析
★ 2013年小学数学复习卷
★ 2013年江苏省初中数学模拟试卷
★ 雅安市2013年中考数学试卷及答案
纵观今年的文科试卷,有两个特点:一是试卷整体难度较往年有所提高;二是试卷难度有所提高。 2、文科试题差异变大。 五个大题依然是往年的三维几何、三角函数、函数、解析几何、序列模式,顺序也做了调整。 在科学上,多年之后再回到函数问题的最终问题是非常困难的; 文科要维护数列的结局,考察数列的基本性质和常规方法,讨论最后一题的情况,需要很高的思维和计算能力。
就立体几何而言,艺术和科学这两个学科彼此无关。 难度比较低,属于分题。 理科科目第一个子题是证明四点共面,需要引起足够的重视,加强纯几何证明的训练,减少对空间向量的依赖。 由于上海文理高考的大方向,还应加强对空间体的体积、表面积、旋转体的相关训练。
三角函数方面(文21、李20),文科和理科的题目完全一样,以解三角形为背景的应用题与2014年的类似。第一题考查学生对三角函数的运用情况。余弦定理; 第二题重点考察学生对应用问题的数学转化,讨论分段函数的最大值。 题目本身难度不大,比较容易上手,但分析过程需要全面,需要学生的计算能力。 16年回顾过程中,要重点加强三角函数相关公式、运算、性质、求解三角形的训练,同时兼顾相关应用的零点和最大值的讨论和计算问题。
就解析几何而言(文22,李21),文理科的提问背景相同,提问角度相似,具体问题不同。 最后一题的难度在文科中比在理科中要大。 该题目考察椭圆与通过原点的两条直线相交形成的四边形或三角形的面积,以及斜率乘积与面积的关系。 文理第一题比较基础,是一个子题; 艺术和科学中的第二个问题是一个非常常规的问题,关于圆锥曲线和直线形成三角形的面积。 思路简单但有一定的计算要求; 设置基本相似,或许考虑到难度梯度,文科比理科难一些。 而科学可以通过“参数方程”来简化。 2016年备考过程中,要加强对圆锥曲线本质的理解,加强解析几何双动点甚至多动点模型的训练和研究,进一步提高计算和参数消除的能力,并防止在处理解析几何的过程中仅使用韦氏狭隘的思维方式来得出定理。
从数列来看(文23,李22),文理科的前两题是完全一样的。 第一题分题,基本上大家都能看懂; 第二题是利用基本累加法研究数列的通项公式并证明相关结论,但由于是证明题,所以不太容易想到从哪里开始。 它对学生的思维能力要求很高,需要深刻理解序列的本质。 文理中的第三个问题是“求满足一定条件的序列的参数取值范围”的问题。 要求非常高,需要有良好的数学素养和基本功。 复习过程中,在深刻理解和理解算术差和等比数列基本序列性质的基础上,进一步分析算术比数列运算或叠加形成的复杂数列,提高对数列本质的理解,强化序列与功能关系的思考。
【名师解析2015年上海高考数学题:难度加大】相关文章:
★ 2015年黑龙江高考数学试卷分析
★ 高考数学:一波三折的题目创新
★ 2015年江苏高考数理题点评
★ 2013年遂宁中考数学试卷
★ 2015年高考数学(重庆卷)解读:中等难度考生轻松入门
★ 名师点评2015年广东高考理数试题:有创新,难度降低
★ 名师点评2015年江苏高考理数试卷:回归基础
★ 2013年高考数学试题
★ 2013年初中数学第二学期模拟试题
★ 2015年高考山东娟数学:突出选题功能,难度设计合理
提醒:请联系我时一定说明是从娱乐之家人才站上看到的! | |
发布者所在地区(仅供参考):,IP:60.247.148.23 |
2015年福建省自题组专家点评高考数学试卷
数学:强调解决实际问题的能力
闽南网6月9日讯 福建数理试卷分别取自构成高中数学主要框架的函数与导数、立体几何、解析几何、概率与统计、三角函数、数列等试题。 它相对较高,有机地融合了相关知识、技能和思维方式,从而全面测试考生成为未来公民所必需的数学基础。
试题适度创新
该命题在保持稳定的同时追求创新,适度考察将现有知识和方法迁移到新情况解决问题的能力。 例如,理论8(第16条)以算术数列和几何数列的定义为载体,综合考察推理论证能力、计算求解能力和创新意识; 理论10和第21条(二)(ii)以几何意义和正弦函数的最小正周期为载体,综合考察推理能力、特殊与一般思想、有限与无限思想以及组合的能力。数字和形状; 理论15以纠错码和异或运算为载体,综合考察阅读理解能力、迁移能力和应用能力。
突出能力考核
该命题把综合运用数学知识和方法解决问题的能力放在首位。 例如,第12条依托“三角函数线”,重点考察推理论证能力、抽象概括能力、数字与形状的结合能力; 第十八条、李十六依托《全网通信融合指标》和《银行卡密码》,重点考察数据处理能力、应用意识、必要性和可能性的思想; 第二十条(三)重点考察空间想象能力、推理论证能力以及基于“两点间最短线段”的还原变换思路; 文学10依托《导数的几何意义》重点考查推理与论证能力、特殊思维与一般思维、数字与形状的结合; 李15依托“纠错码和异或运算”,重点考察推理论证能力和创新意识; 文22、理20依靠“导数综合应用”考察推理论证能力、计算解题能力、创新意识、数形结合、分类整合等。
基于选择的提议
命题强调数学的应用,不仅考察数学知识和方法在学科中的应用。 如文12、文15、文21、文22、李9、李14、李19、李20,也考察数学知识在解决实际问题中的应用; 如文13、文18、李4、李15、原因16。
命题是根据选题要求而定,每个子题的答案也是由易到难。 例如,第20条、第21条、第22条第(一)、(二)题,第十九条、第20条第(一)题相对容易进入,其余题目重点考察考生的自然语言、图形语言等。以及符号语言的转化和思考能力。
【2015年福建省高考数学试卷自命题组专家点评】相关文章:
★ 2015年一年级数学第2卷期中试卷解析
★ 2015年一年级数学期中考试试卷解析
★ 2013年高考数学试题
★ 2013年湛江中考数学模拟试题
★ 2013年六年级数学试卷
★ 2015年高考数学江苏试卷复习
★ 2015年七年级数学期中考试试卷解析
★ 2013年小学数学复习卷
★ 2013年江苏省初中数学模拟试卷
★ 雅安市2013年中考数学试卷及答案
纵观今年的文科试卷,有两个特点:一是试卷整体难度较往年有所提高;二是试卷难度有所提高。 2、文科试题差异变大。 五个大题依然是往年的三维几何、三角函数、函数、解析几何、序列模式,顺序也做了调整。 在科学上,多年之后再回到函数问题的最终问题是非常困难的; 文科要维护数列的结局,考察数列的基本性质和常规方法,讨论最后一题的情况,需要很高的思维和计算能力。
就立体几何而言,艺术和科学这两个学科彼此无关。 难度比较低,属于分题。 理科科目第一个子题是证明四点共面,需要引起足够的重视,加强纯几何证明的训练,减少对空间向量的依赖。 由于上海文理高考的大方向,还应加强对空间体的体积、表面积、旋转体的相关训练。
三角函数方面(文21、李20),文科和理科的题目完全一样,以解三角形为背景的应用题与2014年的类似。第一题考查学生对三角函数的运用情况。余弦定理; 第二题重点考察学生对应用问题的数学转化,讨论分段函数的最大值。 题目本身难度不大,比较容易上手,但分析过程需要全面,需要学生的计算能力。 16年回顾过程中,要重点加强三角函数相关公式、运算、性质、求解三角形的训练,同时兼顾相关应用的零点和最大值的讨论和计算问题。
就解析几何而言(文22,李21),文理科的提问背景相同,提问角度相似,具体问题不同。 最后一题的难度在文科中比在理科中要大。 该题目考察椭圆与通过原点的两条直线相交形成的四边形或三角形的面积,以及斜率乘积与面积的关系。 文理第一题比较基础,是一个子题; 艺术和科学中的第二个问题是一个非常常规的问题,关于圆锥曲线和直线形成三角形的面积。 思路简单但有一定的计算要求; 设置基本相似,或许考虑到难度梯度,文科比理科难一些。 而科学可以通过“参数方程”来简化。 2016年备考过程中,要加强对圆锥曲线本质的理解,加强解析几何双动点甚至多动点模型的训练和研究,进一步提高计算和参数消除的能力,并防止在处理解析几何的过程中仅使用韦氏狭隘的思维方式来得出定理。
从数列来看(文23,李22),文理科的前两题是完全一样的。 第一题分题,基本上大家都能看懂; 第二题是利用基本累加法研究数列的通项公式并证明相关结论,但由于是证明题,所以不太容易想到从哪里开始。 它对学生的思维能力要求很高,需要深刻理解序列的本质。 文理中的第三个问题是“求满足一定条件的序列的参数取值范围”的问题。 要求非常高,需要有良好的数学素养和基本功。 复习过程中,在深刻理解和理解算术差和等比数列基本序列性质的基础上,进一步分析算术比数列运算或叠加形成的复杂数列,提高对数列本质的理解,强化序列与功能关系的思考。
【名师解析2015年上海高考数学题:难度加大】相关文章:
★ 2015年黑龙江高考数学试卷分析
★ 高考数学:一波三折的题目创新
★ 2015年江苏高考数理题点评
★ 2013年遂宁中考数学试卷
★ 2015年高考数学(重庆卷)解读:中等难度考生轻松入门
★ 名师点评2015年广东高考理数试题:有创新,难度降低
★ 名师点评2015年江苏高考理数试卷:回归基础
★ 2013年高考数学试题
★ 2013年初中数学第二学期模拟试题
★ 2015年高考山东娟数学:突出选题功能,难度设计合理
发现更多资讯 >>
友情链接:
娱乐之家资讯网